Quasi-pure projective and injective torsion free abelian groups of rank 2

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Classification Problem for Rank 2 Torsion-free Abelian Groups

We study here some foundational aspects of the classification problem for torsionfree abelian groups of finite rank. These are, up to isomorphism, the subgroups of the additive groups (1n,­), for some n ̄ 1, 2, 3,... . The torsion-free abelian groups of rank% n are the subgroups of (1n,­). For n ̄ 1, that is, the subgroups of (1,­), the isomorphism problem was solved by Baer in the 1930s (see [10...

متن کامل

The Classification of Torsion-free Abelian Groups of Finite Rank up to Isomorphism and up to Quasi-isomorphism

We prove that the isomorphism and quasi-isomorphism relations on the p-local torsion-free abelian groups of fixed finite rank n are incomparable with respect to Borel reducibility.

متن کامل

Jump degrees of torsion-free abelian groups

We show, for each computable ordinal α and degree a > 0(α), the existence of a torsion-free abelian group with proper αth jump degree a.

متن کامل

Uniquely Transitive Torsion-free Abelian Groups

We will answer a question raised by Emmanuel Dror Farjoun concerning the existence of torsion-free abelian groups G such that for any ordered pair of pure elements there is a unique automorphism mapping the first element onto the second one. We will show the existence of such a group of cardinality λ for any successor cardinal λ = μ+ with μ = μ0.

متن کامل

Borel superrigidity and the classification problem for the torsion-free abelian groups of finite rank

In 1937, Baer solved the classification problem for the torsion-free abelian groups of rank 1. Since then, despite the efforts of many mathematicians, no satisfactory solution has been found of the classification problem for the torsion-free abelian groups of rank n ≥ 2. So it is natural to ask whether the classification problem for the higher rank groups is genuinely difficult. In this article...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1976

ISSN: 0035-7596

DOI: 10.1216/rmj-1976-6-1-61